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Near-wall turbulence modelling with enhanced dissipation
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SUMMARY

A low-Reynolds number k–� turbulence model is proposed that incorporates di�usion terms and modi�ed
C�(1; 2) coe�cients to amplify the level of dissipation in non-equilibrium �ow regions, thus reducing the
kinetic energy and length scale magnitudes to improve prediction of adverse pressure gradient �ows,
involving �ow separation and reattachment. Unlike the conventional k–� model, it requires no wall
function=distance parameter that bridges the near-wall integration. The model is validated against a few
�ow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and
experimental data. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerous variants of two-equation eddy viscosity models have been devised and often re-
garded as a favourable compromise between computational accuracy and e�ciency to solve
�uid �ow problems encountered in engineering applications [1–14]. In principle, the high-
Reynolds number model is incapable of properly yielding near-wall resolution adhering to
wall damping and viscous e�ects. Abandoning the background of physical and modelling
uncertainties, a large number of low-Reynolds number (LRN) modi�cations have been pro-
posed to two-equation turbulence closures where the integration up to the wall is extremely
important. Nonetheless, the modelling of near-wall turbulence in many existing LRN models
usually entangles distance to wall as an explicit parameter. This renders the model often
inappropriate to simulating complex �ows involving multiple surfaces, the wall distance of
which becomes cumbersome to de�ne. A remedy to this �aw is to develop a model which
implicates no explicit wall distance while integrating it toward the solid surface. The physical
rationale behind the LRN model independent of wall topology can be ascribed to Reference
[15] ‘matching to wall functions is not trivial, and programming and running time may be
reduced by integrating a �xed-up (low-turbulence Reynolds number) model to the wall’.
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A wall distance free low-Reynolds number k–� turbulence closure model is developed. It
incorporates the pressure di�usion terms in both the k and � equations. The model coe�cients
C�(1;2) depend non-linearly on the strain-rate and vorticity invariants. An extra positive source
term is embodied with the � transport equation. Consequently, the model augments the dissi-
pation level in non-equilibrium �ow regions, thus reducing the turbulent kinetic energy and
length scale magnitudes to improve prediction of adverse pressure gradient �ows involving
separation and reattachment. The wall singularity is removed by using a physically appropriate
time scale that never falls below the Kolmogorov (dissipative eddy) time scale, representing
time scale realizability enforcement accompanied by the near-wall turbulent phenomena. An
eddy viscosity damping function is designed in terms of the total kinetic energy and invariants
of strain-rate and vorticity tensors with no reference to the distance from the wall. In addi-
tion, the turbulent Prandtl number � is adjusted so as to provide substantial turbulent di�usion
in the near-wall region. In essence, the model is tensorially invariant, frame-indi�erent and
applicable to arbitrary topology.
The performance of the new model is demonstrated through the comparison with experi-

mental and DNS data of well documented �ows, consisting of fully developed channel �ows,
a �at plate boundary layer �ow with zero pressure gradient, a backward facing step �ow, and
heat transfer from the circular cylinder in cross �ow, respectively.

2. GOVERNING EQUATIONS

The two-dimensional Reynolds-averaged Navier–Stokes (RANS) equations, including the equa-
tions for the kinetic energy k and dissipation �, can be written in the following form:
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=Q (1)
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Here � is the density and p is the pressure. The total energy is de�ned as

E=�e+
�V ·V
2

+ �k (3)
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where e is the speci�c internal energy and V= ui+ vj is the velocity . The viscous �uxes are

Fv=
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and the viscous stress tensor can be given as

�ij =2�
(
Sij − 1

3
Skk�ij

)
− �uiuj (5)

where � is the laminar viscosity and the Reynolds stresses �uiuj are related to the mean
strain-rate tensor Sij through the Boussinesq approximation:
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The heat �ux is calculated from

q=−
(
�
cp
Pr
+ �T

cp
PrT

)
∇T (7)

where �T is the coe�cient of turbulent viscosity, cp is the speci�c heat at constant pressure, Pr
and PrT represent the molecular and turbulent Prandtl numbers, respectively, and T implies the
temperature. Clearly, the turbulent part of the total heat �ux is estimated using the Boussinesq
approximation. The value of PrT is chosen to be 0.9 [1]. The di�usion of turbulence is
modelled as

�k∇k=
(
�+

�T
�k

)
∇k; ��∇�=

(
�+

�T
��

)
∇� (8)

where �k and �� are the appropriate turbulent Prandtl numbers. The source term Q for the k
and � equations can be written as

Q=




�P − ��+�k
C�1�P − C�2��+ E�

Tt
+��


 (9)

where the turbulent production term P=−uiuj(@ui=@xj) and E� is a secondary source term
designed to increase the level of � in non-equilibrium �ow regions. The symbolized �k
and �� are the pressure di�usion terms, balancing the molecular di�usion in the near-wall
region [2, 3, 16].
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3. NEAR-WALL MODELLING

In the vicinity of the wall, the molecular viscosity e�ect is superior to the turbulent mixing,
re�ecting a strong anisotropic condition. Consequently, an important criterion regarding the
appropriateness of the turbulence model is to represent the near-wall behaviour of turbulence
quantities accompanied by a preferential damping of velocity �uctuations in the direction
normal to the wall that reconciles the in�uence of wall proximity adequately.
The realizable time scale Tt included in Eq. (9) can simply be de�ned as

Tt =

√
k2

�2
+ C2T

�
�
=
k
�

√
1 +

C2T
RT
; RT =

k2

��
(10)

where � denotes the kinematic viscosity and RT is the turbulence Reynolds number. Equa-
tion (10) warrants that the eddy time scale never falls below the Kolmogorov time scale
CT
√
�=�, dominant in the immediate neighbourhood of the solid wall. It prevents the singu-

larity in the dissipation equation down to the wall. Alternatively, the turbulence time scale is
k=� at large RT but approaches the Kolmogorov limit CT

√
�=� for RT�1. Nevertheless, the

empirical constant CT associated with the Kolmogorov time scale induces an ‘arbitrariness’
and the turbulence models constructed so far have deemed values of CT in the range of
1–6 [4–7]. For the present model, CT =

√
2 is used which is estimated as follows. In the vis-

cous sublayer k=y2=(C2T �=�), where the basic scale is the Kolmogorov time scale. Besides,
the k equation reduces to �@2k=@y2 = � as the wall is approached. Combining these rela-
tions provide CT =

√
2. Obviously, the inclusion of Tt in the � equation guarantees near-wall

asymptotic consistency without resorting to ad hoc damping functions employed in many k–�
models [8–10].
To analyse the wall turbulence phenomena, near-wall behaviours of the Reynolds stress −uv,

turbulent kinetic energy k, dissipation rate � and characteristic time scale Tt are represented
around y=0 as [2]

k = ay2 + by3 +O(y4) (11)

�=2�a+ 4�by +O(y2) (12)

uv= cy3 +O(y4) (13)

Tt =CT
√
�=�=y0=

√
a+ · · · (14)

where the coe�cients a= a(x; z), b= b(x; z) and c= c(x; z), given that y is the normal distance
from the wall surface.
Since the viscous dissipation presumably dominates near the wall, the eddy viscosity is

evaluated from

�T =C� f� �kTt (15)
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where C�=0:09 and the dynamic time scale k=� is replaced by Tt , a distinct turbulence time
scale. The damping function is chosen pragmatically as

f� =f�

(
1 +

25
R2�

)√
��
�k
; R�=

√
KT
�	

f� = tanh(C1R� + C2R2�); KT =V ·V=2 + k (16)

where C1 = 3×10−3 and C2 = 4×10−4. The parameter 	= max(S;W ), containing the invariants
of strain-rate and vorticity respectively; S=

√
2SijSij and W =

√
2WijWij . The mean vorticity

tensor Wij is de�ned as

Wij =
1
2

(
@ui
@xj

− @uj
@xi

)
(17)

The coe�cient
√
�-ratio associated with f� is modelled subsequently, rather than being

assigned a value (unlike the commonly adopted practice with �k =1:0, and ��=1:3).
The empirical function f� is valid in the whole �ow �eld, including the viscous sublayer and

the logarithmic layer. In the region close to the wall, the Reynolds stress −uv∼y3 and k ∼y2.
To preserve the correct cubic power-law behaviour of −uv, the damping function needs to
increase proportionally to y−1 in the near-wall region. Equation (16) con�rms that as y→ 0,
R�∼y and hence f�∼y−1. Alternatively, the adopted form of f� reproduces correctly the
asymptotic limit, involving the distinct e�ects of low-Reynolds number and wall proximity.
As evinced by Figure 1 in comparison with the DNS data [16] for fully developed turbulent
channel �ows, the proposed function f�=1 remote from the wall to ensure the model being
compatible to the standard k–� turbulence model. The use of R� (a new parameter with
no reference to the distance from the solid surface) confronts the singularity at neither the
separating nor the reattaching point in contrast to the adoption of y+ = u�y=�, where u� is the
friction velocity. Consequently, the model is applicable to separated and reattaching �ows.
In principle, the eddy viscosity envisages two separate e�ects, comprising the in�uences of
low-Reynolds number and wall proximity.
The budgets of k and � from the DNS data approve that the role of turbulent di�usion in

the near-wall region is substantial. Accordingly, the values of Prandtl number �k and �� are
formulated as

�k =
C�2
C�1
[
√
C�(C�2 − C�1) + f�]; ��=

�k
1:1
(1− C�f�)−1 (18)

where f�=3f�=(1+ 2f2� ). The distribution of � is depicted in Figure 1. The quantities C�(1;2)
and C� are determined later. The model coe�cients �k and �� are developed such that su�cient
di�usion is obtained in the vicinity of the wall and in the core region of the �ow �k=��=1 to
eliminate the common drawback where the turbulent di�usion of k overwhelms the di�usion
of � with �k¡��. To this end, it must be stressed that the modi�cation to f� (rather than
excluding

√
�-ratio traditionally) in Equation (16) reduces the potentiality of f� to grow

particularly in near-wall regions as represented faithfully by Figure 1, thereby facilitating
avoidance of excessive eddy viscosity.
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Figure 1. Variations of f� and � with wall distance in channel �ow: (a) Re�=180 and (b) Re�=395.

Near-wall �ows show a tendency to underestimate the dissipation rate � due to the
local anisotropy of turbulence, adhering to the non-dimensional parameter P=� [11, 17]. The
formulation has been developed to enhance dissipation in such situation using the relation:
C�1 =C∗

�1(a1 + a2P=�), where C
∗
�1, a1 and a2 are model constants [12, 13]. However, this pro-

cedure can cause numerical instability in more complex �ows. One possible approach to
counteracting this adverse situation is to explore alternative elements with relevance to P=�:

C�1 = 1 + 1:35

√
C�
P
�
; C�2 = 1:4

(
1 +

√
C�
P
�

)

P
�
= C�T 2t 	

2; C�=
1

2(1 + Tt
√
S2 +W 2)

(19)

It is appropriate to emphasize herein that the proposed relation meets the requirement of
the equilibrium state P=� ≈ 1 for the logarithmic region in a turbulent channel �ow, where
TtS=TtW ≈ 3:3 [7]. Remarkably, the average C�2=C�1 = 1:3 for the channel �ow, converging
toward the standard C�2-to-C�1 ratio (1:92=1:44 ≈ 1:33). As approved by Figure 2, the rational
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Figure 2. Distribution of C�2 − C�1 with wall distance in channel �ow.

subsistence (Tt; S;W ) to P=� indubitably is conducive to allowing compatible changes in both
C�1 and C�2 that account for the additional production of dissipation by the anisotropy of
turbulence.
The extra source term E� in Equation (9) is constructed from the most extensive turbulent

di�usion models for k and � equations derived by Yoshizawa [18] with the two-scale direct-
interaction approach using the inertial-range simpli�cation. To receive positive bene�ts from
the numerical reliability and to integrate the inertial-range condition directly to the solid wall,
the cross-di�usion term is designed with an assistance of Reference [14] as

E�=C�
�T
Tt
max

[
@(k=�)
@xj

@k
@xj
; 0
]
; C�=

√
C2�1 + C

2
�2 (20)

Obviously, the source term E� stimulates the energy dissipation in non-equilibrium �ows,
thereby reducing the departure of the turbulent length scale from its local equilibrium value
and enabling improved prediction of adverse pressure gradient �ows accompanied by �ow
separation and reattachment. At this stage, it appears necessary to identify that the quantity
E� is characteristically bene�cial in the vicinity of reattachment point and hence, it can be
regarded as an attempt at replacing the Yap correction [19].
In the vicinity of the wall, convection, turbulent di�usion and production approach zero

very rapidly. Consequently, the k equation in the near-wall region can be deduced as

�
@2k
@y2

− �+ �k
�
=0 (21)

With Equations (11) and (12), the expansion relation from Equation (21) is obtained as

�k
�
+ 2�by +O(y2)=0 (22)

necessitating that �k =� must have the near-wall behaviour −2�by to balance the k equation
in the vicinity of the solid surface. Subsequently, near the wall the asymptotic behaviour of
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the remaining terms in the � equation can deliberately be derived as

�
@2�
@y2

∼ y0; C�2�
Tt

∼ y0 (23)

indicating that �� must possess the wall limiting behaviour �� ∼ y0, having agreement with
the DNS. In addition, DNS manifests that the in�uences of pressure di�usion terms decay
quickly away from the wall. To preserve the above-mentioned requirements appropriately, the
pressure di�usion terms �k and �� are modelled as follows:

�k =− @
@xj

(
C�
�k
�
@�
@xj

)
; ��=− @

@xj

(
C�
�
Tt
@k
@xj

)
(24)

where C� ≈ 1
2 at the wall as estimated with reference to Equations (10) and (19). A close

look at the entire contrivance and to the DNS data for channel �ow, reveals that a value
of 1

2 associated particularly with the modelled �� is prone to avoid imbalance between the
molecular di�usion and �� at the wall, compromising inherently with the limit of near-wall
balance in the � equation. Since C�=C�(Tt; S;W ), � must loose its in�uence outside the
close proximity of the wall due to natural damping. Essentially, the compatibility relation
(24) mimics the di�usive nature of the pressure di�usion, resembling the conventional cross-
di�usion model [18]. The content within the brackets can be analogized to that employed in
Equation (8) and computed accordingly.
The transport equations for k and � are subjected to the following boundary conditions at

solid walls:

kw=0; �w=2�

(
@
√
k

@y

)2
≈ 2� k

y2n
(25)

To avoid numerical instability, the approximation for �w is applied at the �rst grid node
neighbouring the wall, rather than on the wall itself. This requires normal distance from a
wall to the nearest grid point, which is unambiguous and readily available. The validity of
Equation (25) necessitates that the grid system is �ne enough to produce the near-wall limiting
behaviour.

4. COMPUTATIONS

To ascertain the e�cacy of the proposed model, a few applications to two-dimensional tur-
bulent �ows consisting of a fully developed channel �ow, a �at plate boundary layer �ow
with zero pressure gradient, a backward facing step �ow, and heat transfer from a circu-
lar cylinder in cross �ow are considered. For a comparison purpose, calculations from the
original Chien (OCH) model [10] and the modi�ed Chien (MCH) model [14] are included.
A cell centred �nite-volume scheme combined with an arti�cial compressibility approach is
employed to solve the �ow equations [20, 21]. A fully upwinded second-order spatial dif-
ferencing is applied to approximate the convective terms. Roe’s [22] damping term is used
to calculate the �ux on the cell face. A diagonally dominant alternating direction implicit
(DDADI) time integration method [23] is applied for the iterative solution to the discretized
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equations. A multigrid method is utilized for the acceleration of convergence [24]. The basic
implementation of the arti�cial compressibility method and associated features are described
in References [20, 21, 25].

4.1. Channel �ow

Computations are carried out for fully developed turbulent channel �ows at Re�=180 and
395, for which turbulence quantities are attainable from the DNS data [16]. Calculations are
conducted in the half-width of the channel, imposing periodic boundary conditions, except for
the pressure, pertaining to the upstream and downstream boundaries. Computations involving
a 48×32 non-uniform grid re�nement for Re�=180 and 48×48 for Re�=395 are considered
to be su�ciently accurate to describe the �ow characteristics. For both cases, the length of
the computational domain is 32�, where � is the channel half-width. To ensure the resolution
of viscous sublayer the �rst grid node near the wall is placed at y+ ≈ 0:4. Comparisons are
made by plotting the results in the form of u+ = u=u�, k+ = k+=u2� , uv

+ = uv=u2� and �
+ = ��=u4�

versus y+.
Figure 3 shows the velocity pro�les for di�erent models. Predictions of both the present

and MCH models agree well with the DNS data. The OCH model slightly overestimates the

Figure 3. Mean velocity pro�les of channel �ow.
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Figure 4. Shear stress pro�les of channel �ow.

mean velocity pro�le in the outer layer. Pro�les of turbulent shear stresses are displayed
in Figure 4. Agreement of all model predictions with the DNS data seems to be almost
perfect.
Further examination of the model performances can be directed to the k+ pro�les as por-

trayed in Figure 5 for the near-wall region. As is evident, the present model prediction is
in broad accord with the MCH model and DNS data. On the contrary, the OCH model pre-
dicts a peak at a slightly shifted location. Figure 6 exhibits the pro�les of �+ from the three
computations. The present model provides a maximum �+ at the wall which is more in line
with the experimental and DNS data. In strong contrast, the OCH and MCH models indicate
misplaced local maxima.

4.2. Flat plate boundary layer �ow

The performance of the proposed model is further contrasted with the experimental data of the
�ow over a �at plate with a high free stream turbulence intensity. The test case is taken from
‘ERCOFTAC’ Fluid Dynamics Database WWW Services (http://�uindigo. mech.surrey.ac.uk/)
preserved by P. Voke. Measurements down to x=1:495m which corresponds to Rex ≈ 94 000,
are made by J. Coupland at Rolls-Royce. The inlet velocity is 9:4 m=s and the pressure
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Figure 5. Turbulence kinetic energy pro�les of channel �ow.

gradient is zero. The upstream turbulence intensity Tu=6:0%, de�ned as Tu=
√

2
3k=Uref ,

where Uref indicates the reference velocity. The dissipation is set so that the decay of free
stream turbulence is in balance.
Computations begin 16 cm ahead of the leading edge and symmetric conditions are applied.

The length and height of the grid are 1.6 and 0:3 m, respectively. The near-wall grid node is
located at y+¡1:0, except the point at the leading edge (y+ =2:1). The grid size is 96× 64
and heavily clustered near the wall.
The predicted skin friction coe�cients (Cf=2u2�=U

2
ref ) are compared with the experimental

data in Figure 7. The overall performance in predicting the friction coe�cient is the best
for the present model, exhibiting an interesting feature that the transition starts at the right
position and it is strong enough. In contrast, both the OCH and MCH models, having the
wall distance in the damping functions provide earlier transition than that seen in the ex-
periment, coincident with Savill’s investigation [26]. Seemingly, the agreement between the
computations and the experiment is fairly good toward the end of the transition (e.g. beyond
x=0:195m). However, the MCH model prediction is somewhat on a lower level than the data
show.
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Figure 6. Dissipation rate pro�les of channel �ow.

Figure 7. Streamwise skin-friction coe�cient of boundary layer �ow.

4.3. Backward facing step �ow

To validate the performance in complex separated and reattaching turbulent �ows, the present
model is applied to the �ow over a backward facing step. The computations are conducted
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Figure 8. Skin-friction coe�cient along the step-side bottom wall.

corresponding to the experimental case with zero de�ection of the wall opposite to the step,
as investigated by Driver and Seegmiller [27]. The reference velocity Uref = 44:2m=s and the
step height h=0:0127 m. The ratio between the channel height and the step height is 9, and
the step height Reynolds number is Re=37500. At the channel inlet, the Reynolds number
based on the momentum thickness is Re
=5000.
For the computations, grids are arranged in two blocks. The smaller one (extended from the

inlet to the step) contains a 16×48 non-uniform grid and the grid size for other one is 120×80.
The inlet conditions are speci�ed four step heights upstream of the step corner and the outlet
boundary conditions are imposed 30 step heights downstream of the step corner. The inlet
pro�les for all dependent variables are generated by solving the models at the appropriate
momentum thickness Reynolds number. All the quantities shown below are normalized by
the step height h and the experimental reference free stream velocity Uref , provided that the
distance x=h is measured exactly from the step corner.
Computed and experimental friction coe�cients Cf along the bottom wall (step side wall)

are plotted in Figure 8. As is observed, the OCH model gives the Cf distribution with a large
overshoot followed by a sudden drop in the immediate vicinity of the reattachment point. Ap-
parently, the ambiguous prediction regarding the OCH model is attributable to shortcomings
in the y+ dependence viscous damping functions employed. The MCH and present models
predict the skin friction coe�cient qualitatively. The positive Cf that starts from x=h=0, is
due to a secondary eddy which sits in the corner at the base of the step, inside the main
recirculation region. The recirculation length predicted by each model can be determined by
measuring the distance from the step corner to a point at which the curve changes sign.
The OCH model predicts a recirculation length of 5.4, and the corresponding predictions
by the MCH and present models are 6.8 and 6.6. The experimental value of the reattach-
ment length is 6:26 ± 0:1, making a fairly good correspondence with the MCH and present
models.
The streamwise mean velocity pro�les at four representative positions are depicted in

Figure 9. Obviously, the predictions of all models are in good agreement with the exper-
iment. It is a bit nebulous that the inaccurate prediction of the Cf distribution by the OCH
model has little e�ect on the velocity pro�les.
Comparisons are extended to the distributions of the turbulent kinetic energy and the cor-

responding Reynolds shear stress at di�erent x=h locations behind the step corner, as shown
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Figure 9. Mean velocity pro�les at selected locations for step �ow.

in Figures 10 and 11. Since the ww component is not measured in the experiment, the usual
approximation k ≈ 3=4(uu+ vv) is employed. A closer inspection of the distribution indicates
that the present model predictions are in a broad agreement with the experimental data. On
average, the agreement is good in both the recirculation and recovery regions.

4.4. Heat transfer from circular cylinder in cross �ow

The performance of the proposed model is further evaluated by comparing with the exper-
imental data of turbulent heat transfer around a circular cylinder at Re=3:6 × 104 in cross
�ow [28]. Probably, this is a typical Re for practical heat exchangers. The con�guration is
geometrically simple but di�cult to model. The reasoning is most likely to be attributed to
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Figure 10. Kinetic energy pro�les at selected locations for step �ow.

the boundary layer separation, leading to another complex environment. The tested cylin-
der consists of a tube with D=0:025 m, where D is the diameter. The reference velocity
is Uref = 22:85 m=s with an upstream turbulence intensity Tu=0:5%. An O type grid with
128 × 96 resolution, clustered heavily near the solid wall, is employed. The radial length of
the computational domain is 60D. External boundary, that is, far �eld, conditions are applied.
A constant temperature is prescribed at the wall, which simulates the experimental boundary
conditions.
Figure 12 portrays the variation of the local Nusselt number with the azimuth angle. As

can be seen, the distribution exhibits the characteristic feature of a minimum Nusselt number
at the separation that corresponds to 
 ≈ 85◦, followed by an increase in heat transfer in the
wake regions. Obviously, the present model prediction maintains good agreement with the
experiment.
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Figure 11. Shear stress pro�les at selected locations for step �ow.

5. CONCLUSIONS

The proposed turbulent model is wall distance free, tensorially invariant and frame-indi�erent.
Consequently, it is applicable to arbitrary topology in conjunction with structured or
unstructured grids. The model is susceptible to the near-wall and low-Reynolds number
e�ects emanating from the physical requirements. The potential importance of the damp-
ing functions is conspicuous. The anisotropic production in the dissipation equation is ac-
counted for substantially by modifying the model constants C�(1;2) and adding a secondary
source term, leading to a reduced level of turbulence generation in non-equilibrium �ow re-
gions. Consequently, the model is capable of evaluating the �ow cases entangling separation
and reattachment. Contrasting the predicted results with measurements demonstrates that the
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Figure 12. Local Nusselt number distribution over half of tube surface.

present model reproduces correctly the skin-friction coe�cients and the near-wall heat transfer
behaviour.

NOMENCLATURE

Cf friction coe�cient
C� eddy viscosity coe�cient
D diameter of a round tube
e speci�c internal energy
E total internal energy
f� viscous damping function
F;G �ux vectors in x, y directions
h step height
k turbulent kinetic energy
Nu local Nusselt number
p static pressure
P turbulent production term
Pr Prandtl number
q heat �ux
Q source term
S mean strain-rate invariant
t time
Tt realizable time scale
u; v velocity components in x, y directions
−�uiuj Reynolds stresses

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:979–997



996 M. M. RAHMAN AND T. SIIKONEN

W mean vorticity invariant
x; y Cartesian coordinates
y+ non-dimensional normal distance from wall

Greek letters

� half-width of a channel
�ij Kronecker’s delta
� turbulent dissipation
�; �T laminar and eddy viscosities
� molecular kinematic viscosity
� density
� turbulent Prandtl number

Subscripts

T turbulent condition
ref reference condition
v viscous part
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